artificial intelligence technology || artificial intelligence chat bot || Application and Types of AI ||

 

What Is Artificial Intelligence (AI)?

Artificial intelligence (AI) refers to the simulation of human intelligence by software-coded heuristics. Nowadays this code is prevalent in everything from cloud-based, enterprise applications to consumer apps and even embedded firmware.

Artificial intelligence (AI) eiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by non-human animals or by humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.

AI applications include advanced web search engines (e.g., Google Search), recommendation systems (used by YouTubeAmazon, and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Waymo), generative or creativis intelligence—perce tools (ChatGPT and AI art), automated decision-making, and competing at the highest level in strategic game systems (such as chess and Go).[1]


Human approach:                                        

      *Systems that think like humans

  •  *Systems that act like humans

Ideal approach:

  • *Systems that think rationally
  • *Systems that act rationally
                                                                                     

How does AI work?

As the hype around AI has accelerated, vendors have been scrambling to promote how their products and services use it. Often, what they refer to as AI is simply a component of the technology, such as machine learning. AI requires a foundation of specialized hardware and software for writing and training machine learning algorithms. No single programming language is synonymous with AI, but Python, R, Java, C++ and Julia have features popular with AI developers.

In general, AI systems work by ingesting large amounts of labeled training data, analyzing the data for correlations and patterns, and using these patterns to make predictions about future states. In this way, a chatbot that is fed examples of text can learn to generate lifelike exchanges with people, or an image recognition tool can learn to identify and describe objects in images by reviewing millions of examples. New, rapidly improving generative AI techniques can create realistic text, images, music and other media.

KEY TAKEAWAYS

  • Artificial intelligence (AI) refers to the simulation or approximation of human intelligence in machines.
  • The goals of artificial intelligence include computer-enhanced learning, reasoning, and perception.
  • AI is being used today across different industries from finance to healthcare.
  • Weak AI tends to be simple and single-task oriented, while strong AI carries on tasks that are more complex and human-like.
  • Some critics fear that the extensive use of advanced AI can have a negative effect on society.

Why is artificial intelligence important?

AI is important for its potential to change how we live, work and play. It has been effectively used in business to automate tasks done by humans, including customer service work, lead generation, fraud detection and quality control. In a number of areas, AI can perform tasks much better than humans. Particularly when it comes to repetitive, detail-oriented tasks, such as analyzing large numbers of legal documents to ensure relevant fields are filled in properly, AI tools often complete jobs quickly and with relatively few errors. Because of the massive data sets it can process, AI can also give enterprises insights into their operations they might not have been aware of. The rapidly expanding population of generative AI tools will be important in fields ranging from education and marketing to product design.AI has become central to many of today's largest and most successful companies, including Alphabet, Apple, Microsoft and Meta, where AI technologies are used to improve operations and outpace competitors. At Alphabet subsidiary Google, for example, AI is central to its search engine, Waymo's self-driving cars and Google Brain, which invented the transformer neural network architecture that underpins the recent breakthroughs in natural language processing.

What Are the 4 Types of AI?

Artificial intelligence can be categorized into one of four types.

  • Reactive AI uses algorithms to optimize outputs based on a set of inputs. Chess-playing AIs, for example, are reactive systems that optimize the best strategy to win the game. Reactive AI tends to be fairly static, unable to learn or adapt to novel situations. Thus, it will produce the same output given identical inputs.
  • Limited memory AI can adapt to past experience or update itself based on new observations or data. Often, the amount of updating is limited (hence the name), and the length of memory is relatively short. Autonomous vehicles, for example, can "read the road" and adapt to novel situations, even "learning" from past experience.
  • Theory-of-mind AI are fully-adaptive and have an extensive ability to learn and retain past experiences. These types of AI include advanced chat-bots that could pass the Turing Test, fooling a person into believing the AI was a human being. While advanced and impressive, these AI are not self-aware.
  • Self-aware AI, as the name suggests, become sentient and aware of their own existence. Still in the realm of science fiction, some experts believe that an AI will never become conscious or "alive".

Artificial intelligence applications

  • Speech recognition: It is also known as automatic speech recognition (ASR), computer speech recognition, or speech-to-text, and it is a capability which uses natural language processing (NLP) to process human speech into a written format. Many mobile devices incorporate speech recognition into their systems to conduct voice search—e.g. Siri—or provide more accessibility around texting. 
    • Customer service:  Online virtual agents are replacing human agents along the customer journey. They answer frequently asked questions (FAQs) around topics, like shipping, or provide personalized advice, cross-selling products or suggesting sizes for users, changing the way we think about customer engagement across websites and social media platforms. Examples include messaging bots on e-commerce sites with virtual agents, messaging apps, such as Slack and Facebook Messenger, and tasks usually done by virtual assistants and voice assistants.
    • Computer vision: This AI technology enables computers and systems to derive meaningful information from digital images, videos and other visual inputs, and based on those inputs, it can take action. This ability to provide recommendations distinguishes it from image recognition tasks. Powered by convolutional neural networks, computer vision has applications within photo tagging in social media, radiology imaging in healthcare, and self-driving cars within the automotive industry.  
    • Recommendation engines: Using past consumption behavior data, AI algorithms can help to discover data trends that can be used to develop more effective cross-selling strategies. This is used to make relevant add-on recommendations to customers during the checkout process for online retailers.
    • Automated stock trading: Designed to optimize stock portfolios, AI-driven high-frequency trading platforms make thousands or even millions of trades per day without human intervention.
    • Smart traffic lights:Smart traffic lights have been developed at Carnegie Mellon since 2009. Professor Stephen Smith has started a company since then Surtrac that has installed smart traffic control systems in 22 cities. It costs about $20,000 per intersection to install. Drive time has been reduced by 25% and traffic jam waiting time has been reduced by 40% at the intersections it has been installed.

    What are examples of AI technology and how is it used today?

    AI is incorporated into a variety of different types of technology. Here are seven examples.

    Automation. When paired with AI technologies, automation tools can expand the volume and types of tasks performed. An example is robotic process automation (RPA), a type of software that automates repetitive, rules-based data processing tasks traditionally done by humans. When combined with machine learning and emerging AI tools, RPA can automate bigger portions of enterprise jobs, enabling RPA's tactical bots to pass along intelligence from AI and respond to process changes.

    Machine learning. This is the science of getting a computer to act without programming. Deep learning is a subset of machine learning that, in very simple terms, can be thought of as the automation of predictive analytics. There are three types of machine learning algorithms:

    • Supervised learning. Data sets are labeled so that patterns can be detected and used to label new data sets.
    • Unsupervised learning. Data sets aren't labeled and are sorted according to similarities or differences.
    • Reinforcement learning. Data sets aren't labeled but, after performing an action or several actions, the AI system is given feedback.

    Machine vision. This technology gives a machine the ability to see. Machine vision captures and analyzes visual information using a camera, analog-to-digital conversion and digital signal processing. It is often compared to human eyesight, but machine vision isn't bound by biology and can be programmed to see through walls, for example. It is used in a range of applications from signature identification to medical image analysis. Computer vision, which is focused on machine-based image processing, is often conflated with machine vision.

    Natural language processing (NLP). This is the processing of human language by a computer program. One of the older and best-known examples of NLP is spam detection, which looks at the subject line and text of an email and decides if it's junk. Current approaches to NLP are based on machine learning. NLP tasks include text translation, sentiment analysis and speech recognition.

    Robotics. This field of engineering focuses on the design and manufacturing of robots. Robots are often used to perform tasks that are difficult for humans to perform or perform consistently. For example, robots are used in car production assembly lines or by NASA to move large objects in space. Researchers also use machine learning to build robots that can interact in social settings.

    Self-driving cars. Autonomous vehicles use a combination of computer vision, image recognition and deep learning to build automated skills to pilot a vehicle while staying in a given lane and avoiding unexpected obstructions, such as pedestrians.

    Text, image and audio generation. Generative AI techniques, which create various types of media from text prompts, are being applied extensively across businesses to create a seemingly limitless range of content types from photorealistic art to email responses and screenplays.

















    टिप्पणियाँ

    इस ब्लॉग से लोकप्रिय पोस्ट

    DJI Matrice 300 RTK | price, details, Accessories | AI Drone Advance technology