EXAMPLES OF AI || ADVANTAGE AND DISADVANTAGE OF AI || HISTORY OF AI || USES OF AI IN DIFFERENT FIELDS
What are examples of AI technology and how is it used today?
AI is incorporated into a variety of different types of technology. Here are seven examples.
Automation. When paired with AI technologies, automation tools can expand the volume and types of tasks performed. An example is robotic process automation (RPA), a type of software that automates repetitive, rules-based data processing tasks traditionally done by humans. When combined with machine learning and emerging AI tools, RPA can automate bigger portions of enterprise jobs, enabling RPA's tactical bots to pass along intelligence from AI and respond to process changes.
Machine learning. This is the science of getting a computer to act without programming. Deep learning is a subset of machine learning that, in very simple terms, can be thought of as the automation of predictive analytics. There are three types of machine learning algorithms:
- Supervised learning. Data sets are labeled so that patterns can be detected and used to label new data sets.
- Unsupervised learning. Data sets aren't labeled and are sorted according to similarities or differences.
- Reinforcement learning. Data sets aren't labeled but, after performing an action or several actions, the AI system is given feedback.
Machine vision. This technology gives a machine the ability to see. Machine vision captures and analyzes visual information using a camera, analog-to-digital conversion and digital signal processing. It is often compared to human eyesight, but machine vision isn't bound by biology and can be programmed to see through walls, for example. It is used in a range of applications from signature identification to medical image analysis. Computer vision, which is focused on machine-based image processing, is often conflated with machine vision.
Natural language processing (NLP). This is the processing of human language by a computer program. One of the older and best-known examples of NLP is spam detection, which looks at the subject line and text of an email and decides if it's junk. Current approaches to NLP are based on machine learning. NLP tasks include text translation, sentiment analysis and speech recognition.
Robotics. This field of engineering focuses on the design and manufacturing of robots. Robots are often used to perform tasks that are difficult for humans to perform or perform consistently. For example, robots are used in car production assembly lines or by NASA to move large objects in space. Researchers also use machine learning to build robots that can interact in social settings.
Self-driving cars. Autonomous vehicles use a combination of computer vision, image recognition and deep learning to build automated skills to pilot a vehicle while staying in a given lane and avoiding unexpected obstructions, such as pedestrians.
Text, image and audio generation. Generative AI techniques, which create various types of media from text prompts, are being applied extensively across businesses to create a seemingly limitless range of content types from photorealistic art to email responses and screenplays.
Uses of AI in Different Fields?
AI in healthcare. The biggest bets are on improving patient outcomes and reducing costs. Companies are applying machine learning to make better and faster medical diagnoses than humans. One of the best-known healthcare technologies is IBM Watson. It understands natural language and can respond to questions asked of it. The system mines patient data and other available data sources to form a hypothesis, which it then presents with a confidence scoring schema. Other AI applications include using online virtual health assistants and chatbots to help patients and healthcare customers find medical information, schedule appointments, understand the billing process and complete other administrative processes. An array of AI technologies is also being used to predict, fight and understand pandemics such as COVID-19.
AI in business. Machine learning algorithms are being integrated into analytics and customer relationship management (CRM) platforms to uncover information on how to better serve customers. Chatbots have been incorporated into websites to provide immediate service to customers. The rapid advancement of generative AI technology such as ChatGPT is expected to have far-reaching consequences: eliminating jobs, revolutionizing product design and disrupting business models.
AI in education. AI can automate grading, giving educators more time for other tasks. It can assess students and adapt to their needs, helping them work at their own pace. AI tutors can provide additional support to students, ensuring they stay on track. The technology could also change where and how students learn, perhaps even replacing some teachers. As demonstrated by ChatGPT, Bard and other large language models, generative AI can help educators craft course work and other teaching materials and engage students in new ways. The advent of these tools also forces educators to rethink student homework and testing and revise policies on plagiarism.
AI in finance. AI in personal finance applications, such as Intuit Mint or TurboTax, is disrupting financial institutions. Applications such as these collect personal data and provide financial advice. Other programs, such as IBM Watson, have been applied to the process of buying a home. Today, artificial intelligence software performs much of the trading on Wall Street.
AI in law. The discovery process -- sifting through documents -- in law is often overwhelming for humans. Using AI to help automate the legal industry's labor-intensive processes is saving time and improving client service. Law firms use machine learning to describe data and predict outcomes, computer vision to classify and extract information from documents, and NLP to interpret requests for information.
AI in entertainment and media. The entertainment business uses AI techniques for targeted advertising, recommending content, distribution, detecting fraud, creating scripts and making movies. Automated journalism helps newsrooms streamline media workflows reducing time, costs and complexity. Newsrooms use AI to automate routine tasks, such as data entry and proofreading; and to research topics and assist with headlines. How journalism can reliably use ChatGPT and other generative AI to generate content is open to question.
AI in software coding and IT processes. New generative AI tools can be used to produce application code based on natural language prompts, but it is early days for these tools and unlikely they will replace software engineers soon. AI is also being used to automate many IT processes, including data entry, fraud detection, customer service, and predictive maintenance and security.
Security. AI and machine learning are at the top of the buzzword list security vendors use to market their products, so buyers should approach with caution. Still, AI techniques are being successfully applied to multiple aspects of cybersecurity, including anomaly detection, solving the false-positive problem and conducting behavioral threat analytics. Organizations use machine learning in security information and event management (SIEM) software and related areas to detect anomalies and identify suspicious activities that indicate threats. By analyzing data and using logic to identify similarities to known malicious code, AI can provide alerts to new and emerging attacks much sooner than human employees and previous technology iterations.
AI in manufacturing. Manufacturing has been at the forefront of incorporating robots into the workflow. For example, the industrial robots that were at one time programmed to perform single tasks and separated from human workers, increasingly function as cobots: Smaller, multitasking robots that collaborate with humans and take on responsibility for more parts of the job in warehouses, factory floors and other workspaces.
AI in banking. Banks are successfully employing chatbots to make their customers aware of services and offerings and to handle transactions that don't require human intervention. AI virtual assistants are used to improve and cut the costs of compliance with banking regulations. Banking organizations use AI to improve their decision-making for loans, set credit limits and identify investment opportunities.
AI in transportation. In addition to AI's fundamental role in operating autonomous vehicles, AI technologies are used in transportation to manage traffic, predict flight delays, and make ocean shipping safer and more efficient. In supply chains, AI is replacing traditional methods of forecasting demand and predicting disruptions, a trend accelerated by COVID-19 when many companies were caught off guard by the effects of a global pandemic on the supply and demand of goods.
What are the advantages and disadvantages of artificial intelligence?
Artificial neural networks and deep learning AI technologies are quickly evolving, primarily because AI can process large amounts of data much faster and make predictions more accurately than humanly possible.
Advantages of AI
The following are some advantages of AI.
- Good at detail-oriented jobs. AI has proven to be as good or better than doctors at diagnosing certain cancers, including breast cancer and melanoma.
- Reduced time for data-heavy tasks. AI is widely used in data-heavy industries, including banking and securities, pharma and insurance, to reduce the time it takes to analyze big data sets. Financial services, for example, routinely use AI to process loan applications and detect fraud.
- Saves labor and increases productivity. An example here is the use of warehouse automation, which grew during the pandemic and is expected to increase with the integration of AI and machine learning.
- Delivers consistent results. The best AI translation tools deliver high levels of consistency, offering even small businesses the ability to reach customers in their native language.
- Can improve customer satisfaction through personalization. AI can personalize content, messaging, ads, recommendations and websites to individual customers.
- AI-powered virtual agents are always available. AI programs do not need to sleep or take breaks, providing 24/7 service.
Disadvantages of AI
The following are some disadvantages of AI.
- Expensive.
- Requires deep technical expertise.
- Limited supply of qualified workers to build AI tools.
- Reflects the biases of its training data, at scale.
- Lack of ability to generalize from one task to another.
- Eliminates human jobs, increasing unemployment rates..
What is the history of AI?
The concept of inanimate objects endowed with intelligence has been around since ancient times. The Greek god Hephaestus was depicted in myths as forging robot-like servants out of gold. Engineers in ancient Egypt built statues of gods animated by priests. Throughout the centuries, thinkers from Aristotle to the 13th century Spanish theologian Ramon Llull to René Descartes and Thomas Bayes used the tools and logic of their times to describe human thought processes as symbols, laying the foundation for AI concepts such as general knowledge representation.
The late 19th and first half of the 20th centuries brought forth the foundational work that would give rise to the modern computer. In 1836, Cambridge University mathematician Charles Babbage and Augusta Ada King, Countess of Lovelace, invented the first design for a programmable machine.
1940s. Princeton mathematician John Von Neumann conceived the architecture for the stored-program computer -- the idea that a computer's program and the data it processes can be kept in the computer's memory. And Warren McCulloch and Walter Pitts laid the foundation for neural networks.
1950s. With the advent of modern computers, scientists could test their ideas about machine intelligence. One method for determining whether a computer has intelligence was devised by the British mathematician and World War II code-breaker Alan Turing. The Turing test focused on a computer's ability to fool interrogators into believing its responses to their questions were made by a human being.
1956. The modern field of artificial intelligence is widely cited as starting this year during a summer conference at Dartmouth College. Sponsored by the Defense Advanced Research Projects Agency (DARPA), the conference was attended by 10 luminaries in the field, including AI pioneers Marvin Minsky, Oliver Selfridge and John McCarthy, who is credited with coining the term artificial intelligence. Also in attendance were Allen Newell, a computer scientist, and Herbert A. Simon, an economist, political scientist and cognitive psychologist. The two presented their groundbreaking Logic Theorist, a computer program capable of proving certain mathematical theorems and referred to as the first AI program.
1950s and 1960s. In the wake of the Dartmouth College conference, leaders in the fledgling field of AI predicted that a man-made intelligence equivalent to the human brain was around the corner, attracting major government and industry support. Indeed, nearly 20 years of well-funded basic research generated significant advances in AI: For example, in the late 1950s, Newell and Simon published the General Problem Solver (GPS) algorithm, which fell short of solving complex problems but laid the foundations for developing more sophisticated cognitive architectures; and McCarthy developed Lisp, a language for AI programming still used today. In the mid-1960s, MIT Professor Joseph Weizenbaum developed ELIZA, an early NLP program that laid the foundation for today's chatbots.
1970s and 1980s. The achievement of artificial general intelligence proved elusive, not imminent, hampered by limitations in computer processing and memory and by the complexity of the problem. Government and corporations backed away from their support of AI research, leading to a fallow period lasting from 1974 to 1980 known as the first "AI Winter." In the 1980s, research on deep learning techniques and industry's adoption of Edward Feigenbaum's expert systems sparked a new wave of AI enthusiasm, only to be followed by another collapse of government funding and industry support. The second AI winter lasted until the mid-1990s.
1990s. Increases in computational power and an explosion of data sparked an AI renaissance in the late 1990s that set the stage for the remarkable advances in AI we see today. The combination of big data and increased computational power propelled breakthroughs in NLP, computer vision, robotics, machine learning and deep learning. In 1997, as advances in AI accelerated, IBM's Deep Blue defeated Russian chess grandmaster Garry Kasparov, becoming the first computer program to beat a world chess champion.
2000s. Further advances in machine learning, deep learning, NLP, speech recognition and computer vision gave rise to products and services that have shaped the way we live today. These include the 2000 launch of Google's search engine and the 2001 launch of Amazon's recommendation engine. Netflix developed its recommendation system for movies, Facebook introduced its facial recognition system and Microsoft launched its speech recognition system for transcribing speech into text. IBM launched Watson and Google started its self-driving initiative, Waymo.
2010s. The decade between 2010 and 2020 saw a steady stream of AI developments. These include the launch of Apple's Siri and Amazon's Alexa voice assistants; IBM Watson's victories on Jeopardy; self-driving cars; the development of the first generative adversarial network; the launch of TensorFlow, Google's open source deep learning framework; the founding of research lab OpenAI, developers of the GPT-3 language model and Dall-E image generator; the defeat of world Go champion Lee Sedol by Google DeepMind's AlphaGo; and the implementation of AI-based systems that detect cancers with a high degree of accuracy.
2020s. The current decade has seen the advent of generative AI, a type of artificial intelligence technology that can produce new content. Generative AI starts with a prompt that could be in the form of a text, an image, a video, a design, musical notes or any input that the AI system can process. Various AI algorithms then return new content in response to the prompt. Content can include essays, solutions to problems, or realistic fakes created from pictures or audio of a person. The abilities of language models such as ChatGPT-3, Google's Bard and Microsoft's Megatron-Turing NLG have wowed the world, but the technology is still in early stages, as evidenced by its tendency to hallucinate or skew answers.
टिप्पणियाँ
एक टिप्पणी भेजें